
Finite Difference Methods for the Computation 
of the "Poisson Kernel" of Elliptic Operators 

By Pierre Jamet 

1. Introduction. Most studies on numerical methods for elliptic differential 
equations have been devoted to the computation of bounded solutions. In this 
paper we study finite difference methods to compute an unbounded solution. The 
problem that we consider has been suggested by Professor J. L. Lions. 

Let G be a bounded domain in R2, with OG as its boundary. We assume that OG 
consists of a finite number of continuous closed curves. Let L be a differential 
operator of the form 

2 2 

(l-1) Lu -a 2 + b a u 
+ C ax + d ai q 

OX2 ay2 Ox ay 
where the coefficients are functions of the point P = (x, y) E G. We assume that 
these functions are Lipschitz-continuous in any interior subdomain of G, that is 
in every subdomain G' such that G' C G. We also assume a(P) > 0, b(P) > 0 and 
q(P) ? 0 for all P C G. 

Let Qo C OG and PO E G. We consider the differential problem 

Lu(P)=0, PCG, 
u(P) = P I' CO G- {Qo}, 

(1-2) u(Po) = 1, 
u(P)>0, PEG, 
u(P) C C2(G) n C(0 {Qo}). 

We will construct a family of finite difference "approximations" and we will 
show that, under certain local conditions on the operator L near the boundary, this 
family contains a subsequence which converges to a solution of problem (1-2). This 
fact establishes the existence of a solution. Moreover, if we know that such a solution 
is unique,* we deduce that the whole family of our "approximations" converges to 
this unique solution; the convergence is uniform in G - N(Qo), where N(Qo) is an 
arbitrary neighborhood of Qo. 

The technique that we use in our proof is one which has already been used by 
the author and S. V. Parter [4], [6]; it is based on the notion of "discrete barrier" 
which goes back to I. G. Petrovsky [8]; a more recent and more general presentation 
of this technique can be found in [5]. 

In Section 2 we introduce the finite difference approximations and recall some 
useful results. In Section 3 we prove our existence and convergence theorem. In 
Section 4 we restrict our attention to operators with constant coefficients and we 
study the behavior of the approximations near the singularity. Finally, in Section 5 
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Received July 24, 1967. 
* For instance, when G is a circle and L is the Laplacian, it is known that this solution is 

proportional to the Poisson kernel at the point Qo (see Rudin [9], problem 8, page 237). (The author 
is indebted to Professor S. V. Parter for this reference.) 
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we give an account of some numerical experiments; the author wishes to express his 
thanks to Mrs. F. Glain who carried out the computations. 

2. Finite Difference Approximations. Let h be a vector in R2 with positive 
components ax and Ay. Let R(h) = {P = (iAx, jAy); i, j integers}. For any point 
P E R(h), let DI(P) = {Pi, P2, P3, P4} = {((i i 1)Ax, (j i l)Ay)}. To define a 
discrete analog of the domain G, we will use, for instance, approximation "of degree 
zero" (see [3]). That is, we defiiie 

G(h) = {P E R(h) nG; 91(P) C G, 

T7(h) = G(h) U (UPGG(h) OI(P)), 

aG(h) = G(h) - G(h). 

We remark that for h small enough, G(h) has the following "strong connected- 
ness" property: for all P E- G(h) and Q E G(h), there exists a sequence of points 
{Po, P1, ..., IP} such that Po = P, Pn = Q, Pi E G(h) and Pi+, Ez D(Pi) for 0 
< i <n. 

Let Lh be a finite difference operator of the form 

(2-1) LhV(P) = -A (P, P)v(P) + E A (P, Q)v(Q) 
QeGJ(P) 

where P' denotes an arbitrary point of G(h) and v an arbitrary function defined 
on G(h). 

We assume that L,, is of positive type for h small enough, that is 

(2-2) A (PI P) > 0, A(P, Q) > O forallP C G(h)andallQ E z1(P), 

E(P)=A(P,P)- E A(v, Q) > O. 
QeJL(P) 

We assume also that Lh is a uniformly consistent approximation of order 1 to the 
differential operator L in any interior subdomain G', that is, given any G' C G' C G 
and any function O(P) E C3(?'), (Lh - L)O(P) = O(h) uniformly in G' as h - 0. 

The assumptions of Section 1 guarantee the existence of an operator Lh with 
such properties (see [5] where examples of such operators are given). 

We will now make a further assumption on Lh, which will imply some conditions 
on the behavior of the functions a(P), b(P), c(P), d(P), q(P) near the boundary. We 
assume that at each point Q E aG- I Qo } there exists a local discrete barrier for 
the family of operators Lh that is, there exists a function B(P, Q) and a neighborhood 
N(Q) of Q such that 

B(P; Q) c(G nN(Q)), 

B(Q; Q) = 0, 

(2-3) B(P; Q) < O vPCE q nN(Q)-{Q}, 

LhB(P; Q) - E(P) > 0, 

for all P EC G(h) n N(Q), and for all h sufficiently small. 

Local (criterions which guarantee the existence of a local discrete barrier at Q can 
be found in [4], [5], [6]. In particular, if the operator L is uniformly elliptic and has 
bounded coefficients in G it is sufficient to assume that there exists a circle C whose 
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intersection with G is the single point Q. However, we do not assume in general that 
L is uniformly elliptic nor has bounded coefficients in G. 

Now let Qo(h) C &G(h) and Po(h) E G(h) be such that Qo(h) - Qo and Po(h) 
Po as h -* 0. 

Let us consider the problem 

Lhv(P) = O P E G(h), 

(2-4) v(P) = 0, P E 9G(h) - {Qo(h)} 

v(Po(h)) = 1 

This problem is a discrete analog of problem (1-2). 
Before closing this section, we state two theorems which are trivial modifications 

of known results; these theorems will be used in the next section. 
Let 3 be a family of mesh functions v(P, h) defined on G(h) for each h and such 

that Lhv(P; h) - 0 for all P C G(h). Let G' be an arbitrary interior subdomain of G; 
suppose h so small that G' is covered by square cells of the mesh; then, by linear 
interpolation in those cells, we can extend the definition of v(P; h) to all G' so that 
v(P; h) C C(G'). The following result holds. 

THEOREM 2.1. If the family a is uniformly bounded in G, then it is equicontinuous 
in G'. 

Proof. This theorem is a slight modification of a theorem of W. V. Koppenfels 
[7], which is itself an extension of a theorem of Courant, Friedrichs and Lewy [2] for 
the Laplace equation. It is easy to show that our consistency assumption is equiva- 
lent to the requirement that the operator Lh has the form 

Lhv = a'v,-+ b'v,- + c'vx +v' + d Y - q'v 

where v, v, x* denote the usual forward and backward difference quotients of v 
and where 

a' = a'(P;h) = a(P) + 0(h), 

(2-5) b' = b'(P; h) = b(P) + O(h), 

q= q'(P; h) = q(P) + 0(h), 

uniformly in any interior subdomain for h small. Now, conditions (2-5) together 
with the Lipschitz-continuity of the coefficients a(P), . ., q(P) in interior sub- 
domains imply the validity of Koppenfels' result on equicontinuity of the family 
T in G'.** 

Now, let ao'MG and od2 G be two complementary subsets of 0G. We assume that 
at each point Q of 0') G there exists a local discrete barrier for the family of operators 
Lh. Let 0(')G(h) be the set of those points in aG(h) whose distance to 0 V)G is less 
than h. Let g(P) E C(G) and let 5 be a family of functions v(P; h) which satisfy, 
for each h: 

** Koppenfels stated this result under somewhat different conditions: he considers a more 
general type of operator, but his assumptions on the coefficients are stronger; also, he is interested 
in the equicontinuity of the first and second difference quotients of the functions v(P; h). It is 
easy to check that our assumptions are sufficient. 
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(2-6) Lhv(P; h) = O, P G G(h), 

v(P; h) = g(P), P E a G(h). 
The following result holds. 

THEOREM 2.2. Assume the family 9 is uniformly bounded. Then, it admits a subse- 
quence {v(P; ha,); h. - 0 which converges to a function u(P) which satisfies: 

Lu(P)=O, P E G, 

(2-7) U(P) = g(P), P EE a&)G 

U (p) EE C2 (G) n C(G U a(')G). 
The convergence is uniform in G - N where N is an arbitrary neighborhood of a(2G, 
iWe., 

Max fv(P; h)-u(P)J-- 0 as h - 0. 
PEG(h) nf(G-N) 

Proof. This theorem is a trivial modification of Theorems 2-1 and 2-2 of [6]. A 
complete proof can be found in [5]; this proof assumes interior equicontinuity of the 
family 9 and, therefore, Theorem 2.1 is needed. 

Remark. The particular case 61MG = OG is of special interest. In that case, condi- 
tions (2-7) imply unicity of the limit function u(P) and therefore, the whole family 
9 converges to u(P) as h -*0; the convergence is uniform in G. 

3. Existence and Convergence Theorem. 
LEMMA 3.1. For h small enough, problem (2-4) has a unique solution v(P; h) defined 

on G(h). 
Proof. Let z(P) be a function defined on 77(h) which satisfies the homogeneous 

system corresponding to (24), i.e. 

Lhz(P)=0, PEG(h), 
(3-1) z(P) = 0, P E OG(h) - IQo(h)1I 

z(Po(h)) = 0. 

Let zo = z(Qo(h)) and suppose zo > 0. Since G(h) is "strongly connected" for h 
small enough and Lh is of positive type, we can apply the "strict" maximum principle 
and deduce 0 < z(P) < zo for all P E G(h). This contradicts the fact that z(Po(h)) 
= 0; therefore, zo ? 0. Similarly we deduce zo > 0 and hence zo = 0. This implies: 
z(P) = 0 for all P E G(h) and the lemma follows at once. Moreover, we note that 

0 < v(P; h) < v(Qo(h); h) for all P E G(h) . 

In the following we will always assume h so small that problem (2-4) has a unique 
solution and we will denote by S = { v(P; hk); h. - 0 } a sequence of those solutions. 

LEMMA 3.2. Let N(Qo) be an arbitrary neighborhood of Qo in R2. Then, the sequence 
S is uniformly bounded in G - N(Qo). 

Proof. Suppose S is not uniformly bounded in G - N(Qo). Then, for every M 
> 0, there exists an infinite subsequence SM C S such that 

(3-2) Max v(P;h) > M foral v E SM 
PEG(h)-N(Qo) 

In the following, we consider only functions v(P; h) in SM. Using the maximum 
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principle, we deduce that, for each h, there exists a finite sequence of points L(h) 
= {P1, P2, **.*. P } such that 

Pi C G(h) -N(Qo) 
Pi C G(h), i = 1, 2, .. *, (n-) 

(3-3) Pi+, N(Pi) 
P, Qo(h) , 

v(Pi; h)> 31, i = 1)2 **n. 

Let N' and N" be two open neighborhoods of Qo in R2 with smooth boundaries 
and such that 

(i) N" C N' C N(Qo), 
(ii) dG n (N' - N") consists of two disjoint connected subsets of dG, say ri 

and r2 (see Fig. A). 

FIGURE' A 

Let Go = G n (N' - N"). For any subdomain G' of G with boundary OG', we 
define discrete sets G'(h), dG'(h) and ?7'(h) in the same way we have defined G(h), 
cG(h) and ?(h). In particular, we consider now the set Oo(h). Suppose h so small that 
Qo(h) C N". Then, we have 

(34) Go(h) = Hi(h) U Lo(h) U H2(h), 

where Lo(h) = L(h) n ao(h) and where Hi(h), H2(h) are the two subsets of No(h) 
lying "on each side" of Lo(h) (say Hi(h) is on the same side as rI). Let s = 1 or 2 
and let g8(P) E C(ao) be such that 0 _ g8(P) _ 1 in Go, g8(P) - 0 in a neighbor- 
hood of aGo - r. and g8(P) 0 0 on r8. Let v8(P, h) be the solution of the problem 
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(3-5) Lhv8(P) = 0, P E Go(h), 

V8(P) = g8(P), P E aGo(h) 

It follows from the maximum principle that, for h small enough 

(3-6) v(P; h) > Mv8(P; h), VP C H81 (h) U Lo(h), 

where s' = 1 or 2; s' # s. Therefore, v(P; h) > M min8=1,2v8(P; h), VP C Go(h) 
because of (3-4). But, applying Theorem 2.2 in the domain Go, we deduce that 
V8(P; h) converges uniformly in Go as h -> 0 to a function u8(P) which is strictly 
positive in any interior subdomain Go' of Go. 

Let 
co= inf {min us(P)T. 

PC-GoR q=1,2 

For h small enough, we have 

(3-7) v(P; h) > Mco/2, VP C Go'(h). 

Now, let G' be a smooth interior subdomain of G, with boundary wG', such that 
Po C G' and 3G' q Go' # 0. Let F3 = aG' n Go' and let g3(P) C C(G') be such 
that Po C G' and 3G' q Go' # 0. Let F3 = aG' n Go' and let g3(P) E C(G') be 
such that 0 < g3(P) < 1 in G', g3(P) _ 0 in a neighborhood of aG' - F3 and 
93(P) 4 0 on F3. Let v3(P; h) be the solution of the problem 

(3-8) Lhv3(P; h) = 0, P C G'(h), 

v3(P; h) = 93(P), P C aG'(h) . 
It follows from Theorem 2.2 that v3(P; h) converges uniformly in G' as h -O 0 to 
some function u3(P) which is strictly positive in any interior subdomain G" of G'. 

Choose G" such that Po C G" and let ci = infpGG" u3(P). For h small enough, 
we have Po(h) C G"(h) and v3(P; h) > cl/2, VP C G"(h); therefore 

(3-9) v3(Po(h); h) > cl/2. 

Using (3-7) and (3-9) and applying the maximum principle, we deduce that, for h 
small enough, 

(3-10) v(Po(h); h) > M(co/2)(c,/2) . 

But v(Po(h); h) = 1 by (2-4) and M is arbitrarily large; therefore, we have reached 
a contradiction and the lemma is proved. 

THEOREM 3-1. Let S = {v(P; ha); h. -+ O} be an arbitrary sequence of solutions of 
(24). Then, S admits a subsequence which converges to a solution of problem (1-2); the 
convergence is uniform in G - N(Qo), where N(Qo) is an arbitrary neighborhood of Qo. 
(Moreover, if the solution of problem (1-2) is unique, the whole sequence S converges to 
this solution.) 

Proof. We will assume that N(Qo) is open and Po Er N(Qo). Let N' be a neighbor- 
hood of Qo such that N' C N(Qo). The sequence S is uniformly bounded in G - N' 
by the preceding lemma. It follows from Theorem 2.2 that there exists a subsequence 
So of S which converges uniformly in G - N(Qo) to a function u(P) with the follow- 
ing properties: 
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Lu(P) = O, PCG-N(Qo), 
u(P) = O, P CaG-N(Qo), 

(3-11) u(Po) - 1, 
u(P) > O in G-N(Qo), 
u(P) E C2(G - N(Qo)) n C(G - N(Qo)). 

Now, let us consider a decreasing sequence {N,(Qo) } of neighborhoods of Qo such 
that nr- Nr(QO) = {Qo}. By taking successive refinements of the subsequence So 
we can extend recursively the definition of the function u(P) in G - Ni(Qo), G - 

N2(Qo)j *-**and finally, in N - tQo} by using a diagonal procedure. The extended 
function is a solution of problem (1-2). 

The rest of the theorem follows at once. 
Remark 3-1. The results of this section are also valid for other types of approxi- 

mation near the boundary (not only for approximation of degree zero). 
Remark 3-2. It is expected that Theorem 3-1 is also valid in Rn, n > 2. However, 

our proof of Lemma 3.2 cannot be extended to more than two dimensions. 

4. Estimates Near Singularity. In this section, we assume that the operator 
(1-1) and its discrete analog (2-1) have constant coefficients. For greater simplicity 
we assume Ax = Ay and we define h = Ax = Ay. We will assume the uniqueness of 
the solution of problem (1-2). 

THEOREM 4-1. Assume that G is convex in a neighborhood of Qo and that there exists 
a constant K, O < K < 1/ v 2 such that 

(4-1) d(Qo(h), Qo) < Kh. 

Then, for h small enough, the following inequality holds: 

(4-2) v(Qo(h); h) > c/h, 

where c is some positive constant (independent of h). 
Proof. First, we introduce the following notations: Given any point P in R2 and 

any positive number p, we denote by S(P; p) the open sphere with center P and 
radius p. Given any set E C R2 and any couple of points P and P' in R2, we denote 
by Epp, the set deduced from E by the translation P -+ P'. 

It follows from the local convexity of G at Qo that there exists a straight line D 
through Qo and a sphere S(Qo; p) such that G n S(Qo; p) lies entirely in one of the 
two half-planes separated by D; let H be this half-plane. Let us choose p so small that 

(4-3) S(Po; p) C G6. 

Let T = H n S(Qo; p/2) and G, = UPCT GQOP. It follows from these definitions that 
D n S(Qo; p/2) C dG1. Now, let r1(h) be the set of all points P G 36!1(h) n S(Qo; p/2) 
such that [G(h)]QO(h)p C 71(h). 

Let v(h) be the number of points in r(h). It follows from (4-1) that there exists 
a constant K1 > 0 such that, for h small enough 

(4-4) v(h) > K1/h. 

For each h and each Q C r(h), let v1(P; h, Q) be the solution of the problem 
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Lhvl (P) = 0, P E G(h), 
(4-5) vi(Q) = 1, 

vi(P) = 0, P E oGi(h)-{Q} 

(note that it is trivial to extend the definition of the operator Lh on Gj(h) since, by 
assumption, this operator has constant coefficients). 

Let vo(P; h) = v(P; h)/v(Qo(h); h). It follows from (2-4) that vo(P; h) satisfies 

LhVo(P) = O. P C G(h), 
(4-6) vo(Qo(h)) = 1, 

vO(P) = 0, P C aG(h) - { Qo(h) } 

Let P' = [Po(h)]QQ,(h). Since Q C r(h), we have [G(h)]Q0c,()Q C G1(h) and there- 
fore, applying the maximum principle, we deduce 

(4-7) vi(Po(h); h, Q) ? vo(P'; h) = v(P'; h)/v(Qo(h); h) 

But, for h small enough, P' C S(Po; (3/4)p) = G* = fixed interior subdomain of G, 
because of (4-3). By Theorem 3-1 and because of our uniqueness assumption on the 
solution of problem (1-2), v(P; h) converges uniformly in G* as h -O 0 to a function 
which is strictly positive in G*; therefore, there exists a constant K2 such that: 

(4-8) v(P'; h) > K2 > 0 for h small enough. 

On the other hand, the function w(P; h) EQCr(h) vj(P; h, Q) satisfies 

Lhw(P) = 0, P C Gi(h), 
w(P) = 1, P C r(h) C aGi(h), 
w(P) = 0, P C aGi(h) -(h) 

and, therefore, the maximum principle implies 

E v 1(P; h, Q) -<: l, VP C- Gi(h) . 
Q EF(h) 

Using this inequality together with (4-7), (4-8) and (4-4) we deduce 

(4-10) 1 > v(h) K2 > 1 KjK2 
v (Qo(h); h) h v(Qo(h); h) 

which ends the proof of the theorem. 
Now, we state two direct corollaries of Theorems 3-1 and 4-1. They involve the 

function vo(P; h) which is the unique solution of problem (4-6). Such a function has 
been considered (with different notations) by many authors, in particular by 
Courant-Friedrichs and Lewy [2] and by Bramble and Hubbard [1]. However, the 
following results seem to be new. 

COROLLARY 4-1. Let G and Qo(h) satisfy the hypotheses of Theorem 4-1. Let N be an 
arbitrary neighborhood of Qo and let vo(P; h) be the unique solution of problem (4-6). 
Then, there exists a positive constant co such that, for h small enough 

(4-11) 0 < vo(P; h) < coh for all P C G(h)-N . 

COROLLARY 4-2. Let G and Qo(h) satisfy the hypotheses of Theorem 4-1. Let V(P; h) 
= (1/h)vo(P; h), where vo(P; h) is the unique solution of problem (4-6). 
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Then every sequence { V(P; ha); h -* 0 1 admits a subsequence which converges to a 
function U(P) which is proportional to the solution u(P) of problem (1-2). 

However, it must be noted that U(P) may be identically zero and that the sequence 
itself does not converge in general.t 

Proof. It follows from Theorem 4-1 and Lemma 3.2 that the family of functions 
V(P; h) I is uniformly bounded in G - N(Qo), where N(Qo) is an arbitrary neigh- 

borhood of Qo. Therefore, by the same argument as for Theorem 3-1, we deduce the 
existence of a converging subsequence. The limit function satisfies the conditions 

Lu(P)=O, PEG, 
u(P) = P. p CaG-{Q0},Q 
u(P)_O, PEG, 
u(P) E C2(G) n C( - {Qo). 

It may be any nonnegative function which is proportional to the solution of problem 
(1-2). 

Remark 4-1. The condition (4-1) can be easily weakened. For instance, let 
dx(Qo(h), D) denote the "horizontal distance" from Qo(h) to D, i.e., the distance 
between Qo(h) and the intersection of D with the straight line through Qo(h) parallel 
to the x-axis. In the same way, let d,(Qo(h), D) denote the "vertical distance" from 
Qo(h) to D. A look at the proof of Theorem 4-1 shows that it is sufficient to assume 
that there exists a line D defined as before such that 

(4-12) min { dx(Qo(h), D), dy(Qo(h), D) I < K'h 

where K' is some constant, 0 < K' < 1. 
Remark 4-2. If we assume that the domain G is concave in a neighborhood of 

Qo, it is easy to prove, by the same kind of argument as for Theorem 4-1, that 
(4-13) v(Qo(h); h) < c'/h. 

(Instead of the domain G1 we must now introduce a domain G2 = npET GQOP) for 
some suitably defined set T.) 

5. Numerical Experiments. (a) We take L = A - a2/ax2 + a2/ay2 and we con- 
sider the two following examples. 

1 ~~~~~~~~2 

0.5 --- -O 1 

0.25 ---1,P i0.5- --_1_jPO 

1QO 
Q2 5 0.5 1 0 0.5 1 3 X 

FIGURE 1 FIGURE 2 

t See Section 5: Numerical experiments. 
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Example 1. G is the unit square shown on Fig. 1 and Qo = (1/2, 0), P0 = (1/2, 
1/2). We will consider, for example, the point P = (1/4, 1/4). 

Example 2. G is the triangle shown on Fig. 2 and Qo = (1, 4/3), Po = (1, 1/2). 
We will consider, for example, the point P = (1/2, 1). 

In both cases, we take h = Ax = Ay = 1/N = 2-n, n integer. 
Hence, in the first example, we have Qo E G(h), P0 E G(h), OG(h) C aG. But, 

in the second example, Qo i G(h) and OG(h) Z OG. In the first example we choose 
Qo(h) = Qo, Po(h) = P0 and in the second example we choose Qo(h) = the point of 
aG(h) which is the closest to Qo, Po(h) = P0. 

In both cases, Lh is the usual five-point approximation of the Laplacian and we 
consider the functions v(P; h.) and V(P; hn) of Theorem 3-1 and of Corollary 4-2. 

In Tables I and II, we give the values of those functions at the point P; Table I 
corresponds to the first example and Table II corresponds to the second example. 

TABLE I (Square) 

N = 1/H v(P, H) V(P, H) 

4 0.7857 0.3928 
8 1.0252 0.4523 

16 1.1257 0.4755 
32 1.1528 0.4825 
64 1.1598 0.4843 

128 1.1616 0.4848 

TABLE II (Triangle) 

N = 11H v(P, H) V(P, H) 

2 0.9375 0.5741 
4 1.6787 0.5214 
8 1.6267 0.6321 

16 1.8765 0.4935 
32 1.8208 0.6332 
64 1.8752 0.4813 

We observe that, in both cases, v(P; hn) converges as n increases; but the con- 
vergence is faster in the first case (a closer examination shows that the convergence 
is 0(h2) in this case). On the other hand, V(P; hn) converges only in the first case; 
in the second case, it seems that the corresponding sequence has two limit points 
(see Fig. 3); the difference between these two cases comes of course from the fact 
that, in the second case, dG(h) ? dG and Qo(h) # Qo.tt These results are in agree- 
ment with Theorem 3-1 and Corollary 4-2. 

(b) Now we check the conclusion of Theorem 4-1. 
Example 3. Same as Example 1 except that Qo = (0, 0) = the origin. 
In this case aG(h) C c3G, but Qo q (3G(h) and therefore, we cannot choose Qo(h) 

tt In that case it would be easy to choose the mesh so that aG(h) C aG and Qo(h) = Qo. For 
a general domain in R2, one should use another type of approximation near the boundary ("full 
grid approximation"; see [1], [3], [6]). 
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= Qo; we choose Qo(h) = (h, 0). The condition (4-12) is satisfied, since we can take 
the x-axis for D, and thus we have dy(Qo(h), D) = 0. Therefore, by Theorem 4-1, 
we must have v(Qo(h); h) > ch-1. 

TABLE III 

N = 1/H v(Qo(H), H) (H) 

4 0.16000E + 01 
8 0.60444E + 02 1.917 

16 0.23614E + 03 1.966 
32 0.93809E + 03 1.990 
64 0.37456E + 04 1.997 

In Table III we give the values of v(Qo(h.); h.), and we compute 

= 1 v(Qo; h) 
(5-1) [(h) = log ' Q 

We observe that [8(h) - A = 2 as h decreases, which shows that 

Example 4. As a generalization of Example 3 we consider the domain shown on 
Fig. 4 with 0 = r/4, r/2, 3r/4, *I*, 2r. We compute [8(h) as in Example 3 and we 

V (P;he) (triangle) 

0.6. 

V~~~~~~~~~~~~~~ / 

0.5-01 - 

FIGURE 3 FIGURIE 4 

observe that 3(h) converges to A = 7r/O as h decreases which shows that 

(5-3) v (Q o(h); h) -chad or 

Therefore, 

v(Qo(h); h) > c'h- if 0 ? ir (convex case), 
v(Qo(h); h) < c"h-1 if 0 > ir (concave case) 
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Finally, Fig. 5 gives a representation of the solution in the case of Example 2 
(triangle). 

2' 

1 

u:O.25\ 

0 1 3 

FIGURE 5 

Service de Math~matiques Appliquees 
Commissariat A 1'Energie Atomique 
Boite Postale 27 
94 - Villeneuve St. Georges 
France 

1. J. H. BRAMBLE & B. E. HUBBARD, "On the formulation of finite difference analogues of 
the Dirichlet problem for Poisson's equation," Numer. Math., v. 4, 1962, pp. 313-327. MR 26 
#7157. 

2. R. COURANT, K. 0. FRIEDRICHS & H. LEWY, "Ober die partiellen Differenzengleichungen 
der mathematischen Physik," Math. Ann., v. 100, 1928, pp. 32-74; English transl., New York 
University Courant Inst. Math. Sciences Research Dept., N. Y. O.-7689. 

3. G. E. FORSYTHE & W. R. WASOW, Finite-Difference Methods for Partial Differential Equa- 
tions, Wiley, New York, 1960. MR 23 #B3156. 

4. P. JAMET, Numerical Methods and Existence Theorems for Singular Linear Boundary-Value 
Problems, Thesis, University of Wisconsin, 1967. 

5. P. JAMET, Theorie des Barrieres Discretes et Applications a des Problemes Lineaires El- 
liptiques du "Type de Dirichlet," Rapport CEA - R 3214, Commissariat A l'Energie Atomique, 
Paris, 1967. 

6. P. JAMET & S. V. PARTER, "Numerical methods for elliptic differential equations whose 
coefficients are singular on a portion of the boundary," SIAM J. Numer. Anal., v. 4, 1967, no. 2. 

7. W. V. KOPPENFELS, Uber die Existenz der Lbsungen linearer partieller Differentialgleich- 
ungen vom elliptischen Typus, Dissertation, G6ttingen, 1929. 

8. I. G. PETROVSKY, "New proof of the existence of a solution of Dirichlet's problem by the 
method of finite differences," Uspehi Mat. Nauk, v. 8, 1941, pp. 161-170. (Russian) MR 3, 123. 

9. W. RUDIN, Real and Complex Analysis, McGraw-Hill, New York, 1966. 


